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Clustering is an effective method to increase the available parallelism in VLIW datapaths without
incurring severe penalties associated with a large number of register file ports. Efficient utilization
of a clustered datapath requires careful binding/assignment of operations to clusters. The arti-
cle proposes a binding algorithm that effectively explores trade-offs between in-cluster operation
serialization and delays associated with data transfers between clusters. Extensive experimental
evidence is provided showing that the algorithm generates high quality solutions for representative
kernels, with up to 33% improvement over a state-of-the-art binding algorithm.
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1. INTRODUCTION

A significant segment of embedded multimedia applications exhibits high
instruction-level parallelism (ILP) in the most time-consuming inner loop ker-
nels. Very Large Instruction Word (VLIW) processors provide a means to effi-
ciently exploit such ILP. A “simple” VLIW datapath may consist of a centralized
register file (RF) with several functional units (FUs) connected to it through
dedicated ports (see Figure 1). With a sufficient number of FUs, a compiler may
be able to utilize all the available static ILP present in a given kernel. However,
as the number of functional units (and thus register file ports) increases, such
“centralized” architectures may become prohibitively costly in terms of clock
rate, power, area, and overall design complexity [Rixner et al. 1999].
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Fig. 1. A simplified model of a centralized VLIW datapath.
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Fig. 2. Decreasing the number of ports by register file replication.

A group of approaches relies on restricting the connectivity between FUs
and registers in order to control the penalties associated with numerous RF
ports, while still providing a sufficient number of functional units to exploit the
available ILP. This is implemented by splitting the centralized RF into several
register files with fewer ports in each one.

One such approach (see, e.g., White and Dhawan [1994] and Ebcioğlu et al.
[1998]) is based on the fact that the number of outputs of a functional unit
(typically 1) is smaller than the number of inputs (typically 2). The idea is to
write each result to several register files which makes it possible to reduce the
number of read ports in each RF as illustrated in Figure 2.

A more radical solution, however, is to structure a VLIW datapath into a set
of clusters (see Figure 3), each cluster containing a set of functional units con-
nected to a local register file. This approach was used in the past [Colwell et al.
1990] and has been adopted in several recent industry products [Texas Instru-
ments 2000; Analog Devices 2001; Basoglu et al. 2000] and research projects
[Rau et al. 1998; Hanno and Devadas 1998; Fritts et al. 1999; Faraboschi et al.
2000; Kailas et al. 2001]. In contrast with centralized architectures, clustered
architectures scale well because they use smaller register files with fewer ports.
Giving up full connectivity also helps to decrease the complexity of the by-
passing structure. In such clustered architectures, however, additional explicit
data transfer operations may be required to move data from one cluster to an-
other (see Figure 3), which may lead to increased schedule latency and energy
consumption.

This article presents an algorithm for binding/assigning operations in a
dataflow graph1 (DFG) to the datapath clusters, so as to minimize latency

1The dataflow graph represents a time-critical inner kernel, which may be a basic block or an
equivalent region, such as hyperblock, superblock, and the like.
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Fig. 3. An example of clustered datapath.

(primary figure of merit) and data transfers (secondary figure of merit). The
algorithm was originally designed to work with VLIW datapaths, specialized to
execute time-critical kernels of embedded applications [Lapinskii et al. 2002].
In that context, it was important to verify its performance on a wide variety
of datapath configurations, including number of clusters, number and types of
FUs in each cluster, FU and bus latencies, and so on (see Section 4).

Note that some approaches (see Section 5) unify/integrate the binding,
scheduling, and register allocation problems. Due to the high complexity of
the joint problem, these methods are necessarily very greedy. By contrast,
and similarly to other approaches targeting clustered machines (most notably,
Desoli [1998] and Faraboschi et al. [1998]), we assume a phasing where bind-
ing (the problem addressed in this article) precedes final scheduling and reg-
ister allocation. Indeed, as mentioned above, clustered datapaths are typically
designed to support high instruction-level parallelism. The decrease in the
number of RF ports achieved through clustering allows one to increase the
size of local register files with a significantly reduced impact on delay/power.
Thus, in a clustered machine with a proper “balance” of resources (functional
units and registers), spills should be rare and not significantly affect perfor-
mance. In other words, for this class of processors, a high-quality partitioning
of operations across clusters (possibly evaluated by comparing estimates of
schedule latencies) should not be significantly affected by spills due to register
shortage.

Our algorithm comprises the phases: (1) generation of an initial bind-
ing solution (B-INIT), and (2) iterative improvement2 of the initial solution
(B-ITER). We note that the fast initial binding algorithm (used in Phase 1)
already delivers good quality results (see Section 4), and may thus be used
(alone) when compilation time is very critical. The second, iterative improve-
ment, phase is designed to deliver maximum quality results when code perfor-
mance is the major goal. In Section 4 we report improvements of up to 25% (for
B-INIT) and up to 33% for (B-ITER) over PCC [Desoli 1998; Faraboschi et al.
1998], a state-of-the-art binding algorithm.

In addition to its obvious relevance to code generation, (see Jacome and de
Veciana [2000]), our binding algorithm has proven to be a key component of
several optimization algorithms addressing other compilation/synthesis tasks.

2Note that the iterative improvement phase uses a fast scheduling algorithm to estimate the quality
of bindings as described in section 3.2.1.1.
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These include a register and code size-sensitive software pipelining algorithm
for clustered VLIW machines [Akturan and Jacome 2001] and a design space
exploration framework for clustered VLIW datapath configurations [Lapinskii
et al. 2002].

The rest of this article is organized as follows. In Section 2 we introduce
the models used in our approach. Section 3 details the proposed binding algo-
rithm. We present experimental results in Section 4, discuss previous work in
Section 5, and conclude in Section 6.

2. DATAPATH AND DATAFLOW MODELS

2.1 Datapath

We model the datapath of a VLIW processor as a set of clusters CL connected
through an interconnect resource, for example, a bus (see Figure 3). Each clus-
ter c ∈ CL comprises a register file and a collection of functional units. Each
functional unit can read up to two operands and write one result to the register
file, through dedicated RF ports.

Each functional unit in the datapath belongs to a corresponding functional

unit type (resource type) t. The number of functional units of type t in cluster c

is denoted by N (c, t). The total number of FUs of type t in a datapath is:

N (t) =
∑

c∈CL

N (c, t).

For generality, we consider the bus to be a resource of type BUS, and denote the
bus capacity (i.e., the number of simultaneous inter cluster data transfers that
the bus can perform) by N ( BUS) or NB for short. Other equivalent interconnect
structures (e.g., a crossbar) can be modeled similarly.

Although the algorithms described in this article are general in terms of
the number of FU types they can handle, only two types (ALU and multiplier)
are used in our examples, so as to facilitate the presentation of results (see
Tables II, III, and IV). Every operation v in the dataflow belongs to an operation
type—optype(v). In our model, each operation type p is associated with one
functional unit type futype(p) (e.g. “subtraction” is performed on ALUs) and
thus, the set of functional unit types partitions the set of operation types.3 Note
that the data transfer (move) operation type is associated with the resource
type BUS; that is, futype(move) = BUS.

As mentioned in Section 1, the proposed binding algorithms do not consider
register allocation when estimating the quality of candidate solutions, and thus
register file sizes are not included in the model. We further discuss this in
Section 4 (experimental validation).

3As mentioned above, our algorithm was primarily developed to work with specialized embedded
VLIW machines. The above “partition” assumption reflects that initial aim, and may not hold for
certain readily available VLIW processors. Specifically, using this algorithm without modifications
for VLIW machines with a significant degree of functionality overlapping among FU types may
lead to poor quality results. We are currently working on an extension allowing the algorithm to
handle datapaths with such overlapping.
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Fig. 4. Dataflow model: (a) original DFG; (b) bound DFG.

2.2 Dataflow

Our model utilizes a dataflow graph (DFG) representation of the kernels of
interest. A DFG is a direct acyclic graph DAG = (V , E). The set of vertices V

represents operations and the set of edges E ⊂ V ×V models data dependencies
between operations.

A DFG can assume two forms: the original and the bound, as illustrated in
Figures 4(a) and (b), respectively. The latter includes the data transfer opera-
tions necessary to deliver data objects from the datapath clusters where they
are produced to the ones where they are consumed (see, e.g., the data transfer
tr1 inserted between operations v2 and v3 in Figure 4(b).

The binding function is denoted by bn(v). An operation v can be bound to
a cluster c if c has a functional unit supporting that operation type. In other
words, bn(v) = c is admissible if N (c, futype(p)) > 0 for p = optype(v). The set
of clusters supporting an operation v of type p is called the target set for that
operation: TS(v). The binding problem can thus be formulated as the selection
of a cluster c in the target set TS(v), for each operation v ∈ V in the original
DFG.

2.3 Timing Model

In general, each pair (p, t) of operation type p (including moves) and resource
type t supporting p, has a corresponding latency lat(p, t), which is defined
as the number of clock cycles needed to produce the result at a specified lo-
cation. In our model, resources can be pipelined.4 For a pipelined resource of
type t executing an operation of type p, we define a data introduction interval

as the number of clock cycles after which the resource is ready to start a new
operation, and denote it by dii(p, t).5 Since in our model resource types parti-
tion the set of operation types, we use a simplified notation for latency (lat(p))
and data introduction interval (dii(p)). For convenience, we use the same no-
tations lat() and dii() for operations and their types: lat(v) = lat(optype(v))
and dii(v) = dii (optype(v)) = dii (futype(v)).

4Our model of pipelining can be applied to both FUs and buses, yet pipelining the latter may be
too expensive.
5When an operation is executed on a nonpipelined resource, lat(p, t) = dii(p, t).
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Fig. 5. Scheduled operations.

The start and finish times of a (scheduled) operation v are denoted by start(v)
and finish(v), respectively (see Figure 5). Their relation to the latency of v is
the following:

finish(v) − start(v) = lat(v) − 1.

Note that start(v) is also referred to as the “scheduling step” of v. The constraints
imposed by data dependencies E on start and finish times of operations are as
follows. Given an edge (vi, v j ), where vi or v j can also be data transfer opera-
tions, start(v j ) > finish(vi) .

The schedule latency L denotes the number of clock cycles necessary to com-
plete the execution of all operations in the DFG:

L = max
v∈V

finish(v).

The functions alap(v) and asap(v) denote the “as late as possible” and “as
soon as possible” scheduling steps of v, respectively. [de Micheli 1994] The latter
is defined in the context of a target latency LTG; specifically, alap(v) represents
the latest possible scheduling step of v, such that a valid schedule that completes
in LTG cycles is still feasible on a datapath with infinite resources.

For a given target latency LTG, the mobility µ(v) of an operation v is defined
as µ(v) = alap(v)− asap(v). Note that mobility of operations in the original and
the bound DFG may differ because of required data transfers.6

3. BINDING ALGORITHM

The binding algorithm proposed in this article consists of two phases. The phase
B-INIT, discussed in Section 3.1, performs a coarse DFG partitioning aimed at
increasing the parallelism in the final schedule, as well as minimizing the num-
ber of data transfer operations. Despite its low complexity, the algorithm used in
this phase delivers very good results. Still, if a better solution is needed, the sec-
ond phase, B-ITER, discussed in Section 3.2, delivers better quality solutions,
at the expense of increased time complexity. The top-level algorithm starts by
invoking the initial binding phase (Section 3.1) a number of times, varying sev-
eral parameters, as discussed in Sections 3.1.3 and 3.1.4. It then passes the

6Mobility of data transfer operations in the bound DFG is defined similarly to that of regular
operations.
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Fig. 6. Illustration of binding order.

best result obtained by the initial binding to the iterative improvement phase
(Section 3.2).

3.1 Initial Binding Phase

The initial binding phase is based on an efficient greedy algorithm that includes
the key elements: (1) a ranking function, used to determine the order in which
nodes are considered for binding; and (2) a cost function that drives the actual
binding process. A good ordering ensures that higher priority is given to the
most critical binding decisions (i.e., the most difficult/constrained operations
are bound first), and the most “flexible” nodes are left for later steps. The cost
function should adequately predict the “global” effect of such “incremental”
binding decisions, and at the same time be computationally inexpensive.

3.1.1 Ordering. One of the simplest ways to order operations is to use
mobility (see Section 2.3) as the ranking function. The rationale behind such
an ordering is that operations with smaller mobility have fewer alternatives
for scheduling, and thus should be considered first. Unfortunately, with this
ordering the algorithm tends to traverse the DFG “vertically” (along the critical
path(s)), making it difficult to formulate a cost function that can systematically
take the resource load into consideration.

We found that the best results were obtained when operations were ordered
lexicographically according to a three-component ranking function:

— First Component: the alap() value of the operation in the original DFG, with
earlier operations considered first. Note that this component ensures that
the producer of a value is bound before any of its consumers.
Consider, for example, the DAG in Figure 6. The partial order defined by
alap() is:

{v1} → {v2, v3, v4} → {v5, v6} .

— Second Component: sorts the nodes at the same alap() level by their mobility
µ(v), with lower mobility receiving higher priority.
For example, since µ(v2) < µ(v3) = µ(v4) and µ(v5) < µ(v6), the previous
partial order is refined as

{v1} → {v2} → {v3, v4} → {v5} → {v6} .

— Third Component: orders the still unordered nodes by the number of con-
sumers for an operation’s result.
In our example, it resolves the order of v3 and v4:

{v1} → {v2} → {v3} → {v4} → {v5} → {v6} .
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Observe that the (partial) order defined by our ranking function still gives
priority to operations on the critical path(s), so as to provide the most binding
flexibility for those “time-sensitive” operations.

In addition, as shown in Section 3.1.2, the level-oriented priority function
component enables the estimation of cluster load during the binding pro-
cess, without the need to schedule the operations. This is one of the key fea-
tures of our binding algorithm. It is very important because if fixed start
times had been greedily assigned to operations during the binding process,
it would have unnecessarily limited the flexibility of the remaining binding
decisions.

3.1.2 Cost Function. Given an ordering on candidate nodes for binding,
the next problem is to estimate the quality of various possible bindings for
the node under consideration. Binding usually involves a trade-off between the
delay associated with operation serialization (when an excessive load is placed
on a cluster) and the delay due to insertion of data transfers (when the load
is scattered through various clusters). For a cost function to work well, both of
these delay “penalties” should be taken into account.

Accordingly, the cost icost(v, c) of binding operation v to cluster c is expressed
as

icost(v, c) = fucost(v, c) dii(v) α + buscost(v, c) dii( BUS) β

+ trcost(v, c) lat( BUS) γ ,

where trcost(v, c) is the data transfer penalty, fucost(v, c) is the FU serializa-
tion penalty, and buscost(v, c) is the bus serialization penalty. As shown in
the equation above, the penalties related to resource constraints, fucost(v, c)
and buscost(v, c), are weighted by the data introduction interval dii() of
the corresponding resources. (If the resource for an operation v is not pipe-
lined, dii(v) = lat(v).) The penalty trcost(v, c) associated with data transfer
operations is weighted by bus latency lat( BUS). We found that better results
are obtained when the data transfer penalty is given just a slightly larger pri-
ority over the serialization penalties. This is achieved by the coefficients α, β,
and γ (i.e., α = β = 1.0 and γ = 1.1).

3.1.2.1 Data Transfer Penalty trcost(). The data transfer penalty function
consists of two components:

trcost(v, c) = trcostdd (v, c) + trcostcc(v, c).

trcostdd : Recall that our ordering of operations (Section 3.1.1) guarantees
that, when we are binding an operation v, the producers of v’s operands have
already been bound. Thus, it is possible to calculate the number of data trans-
fers required to deliver the operands to v, given a binding of v to a cluster c

(see direct data dependency (v1, v) in Figure 7). We denote this cost compo-
nent as trcostdd (v, c), and call it the direct data dependency component. In
order to calculate it, we consider all v’s predecessors pred(v) and, for each
predecessor u ∈ pred(v) bound to a different cluster bn(u) 6= c, we add 1 to
the value of trcostdd (v, c). For example, in Figure 7, pred(v) = v1 and, since

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.



438 • V. S. Lapinskii et al.

Fig. 7. Two components of the data transfer penalty function trcost().

A = bn(v1) 6= B, the direct data dependency component of trcost() for binding
v to B is trcostdd (v, B) = 1.

trcostcc: When the operation being bound (see operation v in Figure 7)
and a previously bound operation (v2 in Figure 7) share a common consumer
operation (v3 in Figure 7), binding v to a cluster different from that assigned
to v3 will necessarily introduce a data transfer. We denote the cost compo-
nent that captures such additional data transfer penalties by trcostcc(v, c), and
call it the common consumer component. The common consumer component
is calculated by considering all successors of v: we add 1 to the cost for each
u ∈ succ(v) that has a bound predecessor w = pred(u), such that bn(w) 6= c. In
Figure 7, trcostcc(v, B) = 1 because v3 ∈ succ(v) and v2 = pred(v3), which is
bound to cluster A: bn(v2) = A 6= B.

3.1.2.2 FU Serialization Penalty fucost (). To account for possible negative
effects of serialization (delay in scheduling) of operations due to insufficient
resources in a cluster, we consider an FU serialization penalty fucost(v, c).
We start by applying a relaxation technique similar to the one used in force-
directed scheduling [Paulin and Knight 1987] to estimate the resource loads on
a centralized datapath “equivalent.”7 When we consider the binding of operation
v ∈ V to a target cluster c ∈ TS(v), we first calculate the corresponding resource
load in c. Then the FU serialization penalty fucost(v, c) of binding v to c is
computed, by comparing the normalized load on c with the normalized load on
the centralized datapath equivalent. Below we give a more detailed description
of this process.

The resource load is expressed as a load profile over the “scheduling”
steps, as shown in Figure 8. The load profile latency parameter LPR is pro-
vided to the initial binding algorithm and may be varied, as described in
Section 3.1.3.

7The decisions of force-directed scheduling are geared towards reducing operations concurrency
(i.e., competition for resources) across all scheduling steps. In simple terms, when considering
scheduling an operation on a given step, if the demand for resources at that step is above the
average demand for the operation’s range of alternative scheduling steps, then the force associated
with that step is positive; otherwise it is negative. Thus, by selecting steps with minimum forces,
the force-directed scheduling algorithm balances resource usage across the schedule. Our “load
profile” method uses similar principles, but for the purpose of binding.
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Fig. 8. Illustration of load profile.

Each operation v contributes to the load of the corresponding FU type t

according to its time frame determined by LPR. The load of operation v at level
τ is defined as

load(v, τ ) =







0 if τ < asap(v)
0 if τ > alap(v) + dii(v) − 1

1
µpr (v)+1 otherwise ,

where µpr (v) = alap(v) − asap(v) is the load profile mobility of v, with alap()
determined for a given LPR. Note that the asap(), alap(), and the correspond-
ing load profile are always calculated for the original DFG (i.e., without data
transfers).

For every level τ and every FU type t, we define the normalized load profile of
the centralized datapath loadDP(t, τ ) as the sum of operation loads load(v, τ )
at time τ for each operation v supported by FUs of type t. The load profile is
normalized by N (t), that is, by the number of FUs of type t in the datapath:

loadDP(t, τ ) =
∑

v∈ops(t)

load(v, τ )

N (t)
,

where ops(t) is defined as ops(t) =
{

v | futype(optype(v)) = t
}

. Similarly, we
define the normalized load profile on FUs of type t in cluster c as

loadCL(c, t, τ ) =
∑

v∈ops(t), bn(v)=c

load(v, τ )

N (c, t)
.

As shown above, only bound operations (bn(v) = c) are considered in cluster
load profiles.

In order to calculate fucost(v, c), we temporarily update the load profile of the
corresponding FU type t in cluster c and compare it with that of the centralized
datapath equivalent. FU serialization penalty fucost(v, c) is increased by 1 for
each clock cycle τ for which loadCL(c, t, τ ) > max( loadDP(t, τ ), 1).8 Note that
the penalty is not incurred if loadCL(c, t, τ ) ≤ 1, because it means that c is not
overloaded, even if loadCL(c, t, τ ) > loadDP(t, τ ).

3.1.2.3 Bus Serialization Penalty buscost(). The efficiency and simplicity
of the initial binding algorithm is partially based on the fact that we always
work with the original DFG (i.e., our relaxation preserves the original level

8If the data introduction interval dii(v) > 1 (i.e., when not fully pipelined FUs are used), the load
is extended beyond the operation’s time frame. Thus, when comparing the load profiles, we may
need to also look below the “current” level τ .

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.



440 • V. S. Lapinskii et al.

ordering of operations). A sufficiently good approximation of the bus load can
be achieved by placing the data transfers “on the side,” right after comple-
tion of the producing operation. The mobility of the data transfer is thus com-
puted as the mobility of the corresponding consumer decreased by the bus
latency lat(BUS). If a data transfer tr “does not fit” (i.e., alap(tr) > asap(tr)),
we assume alap(tr) equal to asap(tr), thus making µ(tr) = 0. buscost(v, c) is
calculated by adding 1 for each clock cycle τ in which load(BUS, τ ) > 1. This
approximation has worked well in practice, and is consistent with our use of
the same centralized load profile (to calculate fucost()) throughout the entire
binding process.

3.1.3 Varying the LPR Parameter. The initial binding algorithm uses the
load profile latency LPR parameter (see Figure 8) for the purpose of calculat-
ing the load profiles of different resources. The top-level binding algorithm
first sets LPR equal to the critical path length LCP of the original DFG. How-
ever, the actual best schedule length L∗ achievable for a given datapath and
DFG may be larger, due to unavoidable serializations and/or data transfers.
If LCP and L∗ differ considerably, the estimations of resource load fucost(v, c)
and buscost(v, c) may be overly pessimistic, which in turn may affect the qual-
ity of solutions produced by the initial binding algorithm B-INIT. Indeed, we
found that increased profile latencies LPR > LCP can frequently lead to better
bindings in these cases.

Thus, a simple way to improve the binding quality is to run the initial binding
algorithm for different profile latencies LPR and choose the solution yielding the
best estimated schedule latency. The top-level algorithm instructs the initial
binding phase B-INIT as to how much LPR should be “stretched.” This approach
is practical because of the low complexity of our initial binding.

3.1.4 Reversing the Order of Binding. We found that for some DFGs, espe-
cially the ones with a smaller number of inputs and larger number of outputs,
starting the binding process from the output nodes may be beneficial. The ini-
tial binding algorithm remains essentially the same, with just a few symmetric
changes. As in the previous case, this optimization is driven by the top-level
binding algorithm.

3.2 Iterative Improvement Phase

Throughout our extensive experimental validation, the initial binding algo-
rithm has performed very well, and in some cases we were able to verify that the
generated solutions were identical in quality to those produced by the CPLEX
ILP solver using the ILP formulation of simultaneous binding and scheduling
for clustered datapaths proposed by Peixoto [1999]. However, in a significant
number of cases, improvement was still possible. To take advantage of these
opportunities, we developed an iterative improvement algorithm that uses spe-
cific binding optimizations aimed at “smoothing” the greediness of the initial
binding, while still controlling computational complexity.

Specifically, our analysis has shown that the quality of the initial partition-
ing of nodes into clusters can be improved by focusing the optimizations on

ACM Transactions on Design Automation of Electronic Systems, Vol. 7, No. 3, July 2002.



Cluster Assignment for VLIW Processors • 441

Cluster BCluster B

Cluster A Cluster A

v1

v3

v2
v2

v3
tr1

tr1

v1

Fig. 9. Cluster boundary perturbation.

operations at the “boundaries” of the partitions defined by the current binding
of operations to clusters, that is, on operations that have either producers or
consumers bound to different clusters. For example, Figure 9 shows reassign-
ment of one of such operations, v2, from cluster A to cluster B.

Iterative improvement based on such boundary perturbations, provides
opportunities for repositioning, eliminating, and collapsing data transfers.
Observe that in Figure 9, the data transfer operation tr1 “shifts” up along the
path, possibly reducing bus congestion that may exist at the original temporal
location of tr1. As far as regular operations are concerned, the perturbations
can facilitate reduction of serialization in certain ways:

(1) by achieving a more favorable load distribution among clusters; and

(2) by shifting the scheduling positions of regular operations and data transfers
up or down.

The latter is a result of modifications in the bound DFG (e.g., in Figure 9 the
scheduling interval of v2 shifts down after cluster reassignment).

At each iteration in our improvement algorithm, we perform such bound-
ary perturbations driven by a cost function. In its simpler version, the algo-
rithm terminates when the perturbations fail to find a binding solution with
cost improving upon that obtained in the previous iteration.9 As illustrated in
Figure 9, the boundary perturbations in each iteration are performed on the
bound DFG, by considering all operations that have either an operand or result
delivered to/from a different cluster. This is similar to the “neighborhood” con-
cept in Geurts et al. [1997]. For each such operation, we temporarily rebind it to
the cluster(s) where the operand/result resides. We perform such rebindings for
individual operations and for pairs of operations. Each new binding produced
by such perturbations is evaluated using a binding quality function.

3.2.1 Binding Quality Functions. In this section we discuss the two dif-
ferent quality functions developed for our algorithm: QU and Q H . When the
quality of the final binding solution is of major priority, we run two optimiza-
tions (one with QU and another with Q H ) and choose the result with the smaller
estimated L (obtained with a fast list scheduler).

3.2.1.1 Design Considerations. For an iterative optimization process to
work well, it is important for the quality function to facilitate a gradual (incre-
mental) improvement from iteration to iteration.

9We discuss a more powerful option later in Section 3.2.1.
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Fig. 10. Illustration of quality function QU .

Consider the schedule fragment shown in Figure 10(a), where two operations
v1 and v2 are executed at the last clock cycle τ = L. To improve the overall
schedule latency L, both of these operations need to become schedulable at an
earlier cycle, yet this may be impossible to achieve in a single perturbation
iteration. Suppose, however, that one improvement iteration can find a binding
that makes it possible to schedule operations v3 and v2 one clock cycle earlier
without affecting v1 (see Figure 10(b)). Such modification does not change L.
Thus, a naı̈ve quality function that only considered the schedule latency would
not distinguish between bindings (a) and (b) in Figure 10. Our experiments
showed, however, that a binding like (b) very often has advantages over (a), since
a single local perturbation iteration generally has more chances to improve the
schedule latency L when fewer operations complete at the last clock cycle. This
was especially noticeable in DFGs with a large number of outputs, such as
the discrete cosine transform algorithms (see Section 4) or unrolled versions of
single-output DFGs.

3.2.1.2 The QU Function. We developed a simple and very efficient qual-
ity function that is capable of estimating not only the quality of a bind-
ing, but also its potential for improvement of L. It is expressed as a vector
QU = (L, U0, U1, ...), where Ui is the number of regular operations completed
at step L−i (see Figure 10). Two bindings are compared lexicographically using
the elements of their corresponding QU vectors.

3.2.1.3 The Q H Function. The second binding cost function focuses on the
overall delay incurred by regular operations due to serialization and/or data
transfers. For each regular operation v ∈ V , we define an operation delay (see
Figure 11) as follows.

H(v) = min
vi ∈pred(v)

hi, where

hi = start(v) − finish(vi) − 1

= start(v) − start(vi) − lat(vi).

Note that H(v) has two desirable properties. Its components hi do not depend
on the reason for the delay. Indeed, the definition of hi does not specify what
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Fig. 12. Correct identification of equal solution quality.

caused the difference between start(v) and finish(vi)—a data transfer between
vi and v or operation serialization due to cluster overload.

The second important property of H(v) is that it only depends on the smallest

component among hi. Indeed, the fact that, in Figure 11, v is delayed by 2 cycles
with respect to v1 (i.e., h1 = 2) should not and does not affect H(v), because v

can not be pushed up by more than one clock cycle (h2 = 1), given the start time
of v2.

The total operation delay H is defined as follows.

H =
∑

v∈V

Hµ(v), where

Hµ(v) =

{

0 if µ(v) ≥ H(v)
H(v) − µ(v) otherwise .

In other words, H is the sum of operation delays in excess of their corresponding
mobilities. The mobilities µ(v) here are calculated for the original (unbound)
DFG with the target latency equal to the graph’s critical path length: LTG =

LCP. Observe that H provides a good integral characteristic of the solution
quality and, unlike QU , pinpoints critical delays regardless of their proximity to
the final clock cycle of the schedule. For example, all three solutions in Figure 12
have the same H = 1, and thus are correctly identified as equivalent.10

10For simplicity, we do not show other operation(s) that cause serialization of v3 in the right graph
in Figure 12.
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Table I. Benchmarks

Name
No.

nodes
No. Connected
Components

Critical
Path

EWF 34 1 14
ARF 28 1 8
FFT 38 3 4
DCT-LEE 49 2 9
DCT-DIF 41 2 7
DCT-DIT 48 1 7
DCT-DIT-2 96 2 7

SWIM1 26 3 4
SWIM2 15 3 5
WUPWISE 14 2 3
QUAKE1 36 6 4
QUAKE2 36 6 4
AMMP 24 1 3

We use H to define our second binding quality function Q H as follows.

Q H = (L, H).

This quality function frequently works better than QU , especially in DFGs with
few outputs.

3.2.1.4 Minimizing Moves with Q M . As mentioned above, QU and Q H are
aimed at minimizing L. If additional minimization of NMV is required, we use
the quality function proposed by Desoli [1998] and denoted in this article by
Q M = (L, NMV). Among solutions with the same estimated schedule latency
L, this quality function gives preference to bindings with fewer data transfer
operations.

4. EXPERIMENTAL RESULTS AND VALIDATION
OF THE BINDING ALGORITHM

Table I summarizes key characteristics of the representative benchmarks se-
lected for experimental validation of our algorithm. These include an elliptic
wave filter (EWF), an autoregression filter (ARF), a version of a fast fourier
transform (FFT) algorithm which is the main kernel in the RASTA benchmark
from MediaBench [Lee et al. 1997], various discrete cosine transform (DCT) al-
gorithms [Ifeachor and Jervis 1993], and the DCT-DIT-2, an unrolled version of
the DCT-DIT algorithm. In order to assess the performance of the algorithms in
a different application domain, we also selected some additional computation-
ally intensive kernels from SPEC2000 (Floating Point) [Dixit 2001]: SWIM1,
SWIM2, WUPWISE, QUAKE1, QUAKE2, and AMMP.

Throughout the examples in Tables II and III, we assume that the datapath
has two buses and all operations take one cycle. In the last set of examples
(Table IV), we vary the latency of data transfer operations and the number of
buses for the FFT benchmark and also report the results for DCT-DIT with
two-cycle multiplications, so as to illustrate the generality of the algorithm.

For each benchmark, several experiments were created using a broad vari-
ety of datapath configurations. Clusters are symbolically represented as |i, j |,
where i is the number of ALUs, and j is the number of multipliers in the
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Table II. Multimedia Benchmark Results for NB = 2 and lat(BUS) = 1

Datapath PCC B-INIT B-ITER

L/M msec L/M 1L% msec L/M 1L% sec

DCT–DIF

|1, 1|1, 1| 16/15 3.7 15/2 6.7 2.4 15/2 6.7 0.05
|2, 1|2, 1| 11/0 4.8 11/10 0 2.4 10/6 10 1.3
|2, 1|1, 1| 11/12 5.9 11/6 0 2.4 10/6 10 0.19
|1, 1|1, 1|1, 1| 12/8 13 12/9 0 3.1 11/8 9 5.1

DCT–LEE

|1, 1|1, 1| 16/11 8.0 16/7 0 4.3 16/6 0 3.8
|2, 1|2, 1| 12/8 9.2 12/2 0 4.3 12/2 0 2.9
|2, 1|1, 1| 13/9 13 13/5 0 4.3 13/3 0 0.52
|2, 2|2, 1| 11/0 8.4 10/2 10 4.3 10/1 10 0.03
|1, 1|1, 1|1, 1| 14/8 19 12/14 17 5.5 12/10 17 3.7

DCT–DIT

|1, 1|1, 1| 19/18 8.1 19/7 0 2.9 19/7 0 0.85
|2, 1|2, 1| 13/18 7.1 13/7 0 2.9 12/7 8.3 1.3
|1, 1|1, 1|1, 1| 15/18 7.3 15/19 0 3.7 13/15 15 7.3
|2, 1|2, 1|1, 1| 12/6 11 11/13 9 3.7 11/9 9 1.5
|3, 1|2, 2|1, 3| 11/12 15 11/12 0 3.7 9/9 22 3.1
|1, 1|1, 1|1, 1|1, 1| 14/17 22 13/17 7.7 4.4 11/14 27 7.4

DCT–DIT–2

|1, 1|1, 1| 37/32 20 37/14 0 5.8 37/13 0 2.2
|2, 1|2, 1| 23/28 38 23/17 0 5.8 22/23 4.6 20
|1, 1|1, 1|1, 1| 25/28 29 27/15 −7.4 7.3 25/13 0 16
|3, 1|2, 2|1, 3| 17/18 43 17/20 0 8.2 14/20 21 22
|1, 1|1, 1|1, 1|1, 1| 22/30 174 20/21 10 9.0 19/18 16 21

FFT

|1, 1|1, 1| 14/6 5.8 14/4 0 1.9 14/4 0 0.10
|2, 1|2, 1| 10/6 7.7 10/4 0 1.9 10/4 0 0.14
|1, 1|1, 1|1, 1| 12/8 6.1 10/12 20 2.4 10/9 20 1.5
|2, 1|2, 1|1, 2| 10/4 9.8 8/10 25 2.6 8/5 25 0.6
|3, 2|3, 1|1, 3| 7/4 13 7/6 0 2.6 6/5 17 1.8
|1, 1|1, 1|1, 1|1, 1| 11/10 25 10/12 10 3.0 9/6 22 5.4

EWF

|1, 1|1, 1| 18/5 5.7 17/3 5.9 3.9 17/3 5.9 0.04
|2, 1|2, 1| 15/2 4.1 16/3 −6.3 3.9 15/1 0 1.5
|2, 1|1, 1| 15/2 4.2 16/5 −6.3 3.9 15/3 0 0.59
|1, 1|1, 1|1, 1| 18/5 18 17/7 5.9 4.8 16/5 12 1.4
|2, 2|2, 1|1, 1| 15/2 7.2 15/5 0 4.9 14/5 7.1 3.3

ARF

|1, 1|1, 1| 13/5 1.6 11/4 18 2.0 11/4 18 0.22
|1, 2|1, 2| 10/5 2.0 10/5 0 2.0 10/4 0 0.28

corresponding cluster.11 For comparison purposes, we also report schedule
latencies and number of data transfer operations obtained with our imple-
mentation of the Partial Component Clustering (PCC) algorithm [Desoli 1998;
Faraboschi et al. 1998], one of the best binding algorithms found in the litera-
ture (see Section 5).

11For example, the configuration |2, 1|1, 1| represents a datapath with two clusters. The first one
has two ALUs and one multiplier; the second one includes one ALU and one multiplier.
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Table III. SPEC2000 Benchmark Results for NB = 2 and lat( BUS) = 1

Datapath PCC B-INIT B-ITER

L/M msec L/M 1L% msec L/M 1L% sec

SWIM1

|1, 1|1, 1| 9/1 1.5 9/1 0 0.63 9/1 0 0.03
|2, 1|2, 1| 7/1 1.4 7/1 0 0.63 7/1 0 0.03
|2, 1|1, 1| 8/0 1.9 7/2 14 0.63 7/2 14 0.02
|2, 2|2, 1| 6/0 1.8 6/1 0 0.63 6/0 0 0.02
|1, 1|1, 1|1, 1| 7/5 2.4 6/3 17 0.77 6/3 17 0.03
|1, 1|1, 1|1, 1|1, 1| 7/0 4.5 6/4 17 0.99 6/2 17 0.12

SWIM2

|1, 1|1, 1| 6/1 0.82 7/0 −14 0.47 6/1 0 0.01
|2, 1|2, 1| 6/0 0.59 6/0 0 0.47 6/6 0 0.01
|2, 1|1, 1| 6/0 0.61 6/0 0 0.47 6/0 0 0.01
|2, 2|2, 1| 5/0 0.58 5/0 0 0.47 5/0 0 0.01
|1, 1|1, 1|1, 1| 5/0 2.7 5/0 0 0.59 5/0 0 0.01
|1, 1|1, 1|1, 1|1, 1| 5/0 4.2 5/5 0 0.7 5/0 0 0.01

WUPWISE

|1, 1|1, 1| 6/4 0.62 6/2 0 0.24 6/0 0 0.01
|2, 1|2, 1| 6/4 0.62 7/2 −14 0.24 6/2 0 0.02
|2, 1|1, 1| 6/4 0.62 7/2 −14 0.24 6/2 0 0.03
|2, 2|2, 1| 5/4 0.98 5/1 0 0.24 5/1 0 0.02
|1, 1|1, 1|1, 1| 6/2 1.8 6/0 0 0.23 5/2 20 0.03
|1, 1|1, 1|1, 1|1, 1| 5/2 2.1 5/2 0 0.37 5/2 0 0.02

QUAKE1

|1, 1|1, 1| 10/0 1.6 10/0 0 0.86 10/0 0 0.09
|2, 1|2, 1| 10/0 1.7 10/0 0 0.86 10/0 0 0.17
|2, 1|1, 1| 10/0 1.7 10/3 0 0.86 10/2 0 0.17
|2, 2|2, 1| 7/0 1.6 7/0 0 0.86 7/0 0 0.08
|1, 1|1, 1|1, 1| 7/0 2.7 7/0 0 1.2 7/0 0 0.09
|1, 1|1, 1|1, 1|1, 1| 7/0 3.2 7/3 0 1.4 6/2 17 0.43

QUAKE2

|1, 1|1, 1| 13/0 1.8 13/0 0 0.85 13/0 0 0.03
|2, 1|2, 1| 11/0 1.8 11/0 0 0.85 11/0 0 0.03
|2, 1|1, 1| 13/0 1.8 12/3 8.3 0.85 12/1 8.3 0.06
|2, 2|2, 1| 9/0 2.6 8/3 13 0.85 8/3 13 0.03
|1, 1|1, 1|1, 1| 9/0 3.0 9/0 0 1.1 9/0 0 0.09
|1, 1|1, 1|1, 1|1, 1| 9/0 3.4 9/0 0 1.4 9/0 0 0.11

AMMP

|1, 1|1, 1| 8/5 2.8 8/5 0 0.43 8/5 0 0.09
|2, 1|2, 1| 7/4 2.7 8/5 −13 0.43 7/4 0 0.10
|2, 1|1, 1| 7/4 2.7 8/8 −13 0.43 7/4 0 0.18
|2, 2|2, 1| 6/5 2.7 6/5 0 0.43 6/3 0 0.14
|1, 1|1, 1|1, 1| 7/6 5.0 7/6 0 0.55 6/6 17 0.32
|1, 1|1, 1|1, 1|1, 1| 8/4 6.6 7/9 14 0.63 6/7 33 1.3

Tables II through IV present “schedule latency/number of data transfers”
pairs (L/M) for the PCC algorithm, for our initial binding phase (B-INIT), and
for our iterative improvement phase (B-ITER). They also show the latency im-
provement percentages (1L%) of our algorithm as compared to PCC and the
CPU times. The performance of the algorithms is also summarized in Figure 13.
Our B-INIT algorithm almost always executes faster than PCC (which includes
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Table IV. Example of Binding Results for FFT and DCT-DIT with Several Values of NB,
lat(BUS), and lat(MLT)

Datapath PCC B-INIT B-ITER

Clusters NB L/M msec L/M 1L% msec L/M 1L% sec

FFT — lat(BUS) = 1, lat(MLT) = 1

|2, 2|2, 1|2, 2|3, 1|1, 1| 1 9/5 19 8/4 12 1.8 7/4 29 5.0
2 8/4 35 8/4 0 1.8 7/5 14 1.9

FFT — lat(BUS) = 2, lat(MLT) = 1

|2, 2|2, 1|2, 2|3, 1|1, 1| 1 10/5 21 8/4 25 1.8 8/2 25 5.7
2 8/4 28 8/4 0 1.8 7/4 14 7.4

DCT–DIT — lat(BUS) = 1, lat(MLT) = 2

|1, 1|1, 1| 2 20/18 8.5 21/15 −4.8 4.3 20/7 0 0.76
|2, 1|2, 1| 2 14/14 7.4 15/6 −6.7 4.2 13/7 7.7 1.2
|1, 1|1, 1|1, 1| 2 16/18 7.7 17/19 −5.9 5.5 14/14 14 8.0
|2, 1|2, 1|1, 1| 2 13/16 12 13/17 0 5.4 12/13 8.3 2.6
|3, 1|2, 2|1, 3| 2 13/14 12 12/10 8.3 5.6 11/7 18 2.9
|1, 1|1, 1|1, 1|1, 1| 2 15/17 24 15/18 0 6.7 13/13 15 9.1

an iterative improvement phase responsible in some cases for as much as a
1900% slowdown as compared to B-INIT). Yet, in the majority of the examples
(see Figure 13), B-INIT performs no worse than PCC, and even shows latency
improvements of up to 20 to 25% in some cases. B-ITER, our second binding
phase shows more consistent improvements over PCC, at the expense of an
increase of computation time (up to 7 seconds in some datapath configurations
for DCT-DIT and FFT and to 22 seconds for 96-node DCT-DIT-2, measured on
an RS6000 595). Note that the iterative improvement binding algorithm aims
at high optimization. We consider these times acceptable in the context of the
embedded applications of interest, since the quality of the synthesized VLIW
datapaths and/or the quality of generated code are of major importance.

We have also conducted an additional set of experiments to assess the ro-
bustness of the binding algorithm over a wide range of datapath configurations,
particularly for datapaths with an “excessive” number of clusters.12 It has been
confirmed that the proposed binding algorithm successfully resists unneces-
sary scattering of operations which is frequently a problem with other binding
algorithms if they are solely based on load balancing (some such results are
shown in Table IV).

A final note concerning the experimental results presented in this sec-
tion: the schedule latencies reported in Tables II through IV were de-
rived by a list scheduler, using the specific binding (cluster assignment)
function generated by each of the algorithms PCC, B-INIT, and B-ITER.
Register files are assumed to have unlimited size, and thus register al-
location is not included in the scheduling process. All other resources,
namely, functional units, clusters, and buses, as well as operations (includ-
ing move/copy), are accurately modeled by the scheduler, as discussed in
Section 2.

12By an “excessive” number we mean the case when the DFG is such that any binding which
utilizes all the clusters leads to a worse schedule than a good binding that leaves some of the
clusters completely unassigned.
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Fig. 13. Summary of relative performance of B-INIT and B-ITER compared to PCC. Each point
represents a single experiment.

PCC and B-ITER use actual schedule latencies to evaluate the quality of
candidate solutions, and direct their iterative search. Those latencies are gen-
erated by an external scheduler. In contrast, B-INIT, our constructive greedy
algorithm, does not include actual schedule latencies in its cost function (i.e.,
works based solely on abstract metrics; see Section 3.1). Accordingly, since it
is conceivable that some of the latency results reported in Tables II through
IV may not be possible to achieve on a machine with limited register file sizes
(due to spills), there is no guarantee that B-INIT would indeed perform better
than (or similarly to) PCC or B-ITER in such cases. Still, the specific design of
B-INIT’s cost function (see Section 3.1.2), explicitly incorporating serialization
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(i.e., cluster oversubscription) and data transfer penalties, has proven to be very
powerful. Indeed, as discussed in the sequel, we have been able to easily adapt
it so as to generate binding solutions that lead to different degrees of register
pressure during scheduling.

Specifically, throughout the experiments performed with the register-
sensitive software pipelining algorithm CALiBeR [Akturan and Jacome 2002],
we empirically found that decreases in the relative weight of the data transfer
penalty coefficient γ with respect to the cluster serialization penalty coefficient
α in B-INIT’s cost function, lead to finding binding solutions with “inherently”
lower register pressure. Indeed, by doing so, one favors solutions that more
aggressively distribute load across clusters, thus decreasing ILP on each indi-
vidual cluster. For details on the excellent performance of the software pipelin-
ing algorithm CALiBeR versus state-of-the-art approaches, see Akturan and
Jacome [2002].

We conclude by observing that the comparative assessment of the perfor-
mance of B-ITER versus PCC, based on the empirical data shown in Tables II
through IV, is not significantly affected by the fact that register allocation is
not incorporated in the external scheduler used to produce the latency results.
Indeed, both iterative improvement algorithms account for the specific idiosyn-
crasies of the scheduler being used (and, for that matter, of a possible register
allocator as well) while generating their solutions, since both incorporate the
actual schedule latency of candidate solutions (produced by the external sched-
uler), in their cost functions. Thus, if register allocation is incorporated, both
B-ITER and PCC will take its impact into consideration. Still, when targeting
machines with “small” register files, it may be of interest to run B-ITER for a
few initial solutions, produced by varying the relative weights of the parameters
α and γ in B-INIT’s cost function, as mentioned above.

5. PREVIOUS WORK

Capitanio et al. [1992] perform binding using an extension of classical net-
work partitioning algorithms with simulated annealing enhancements. The
algorithm is given the initial schedule obtained for an equivalent centralized
machine. The primary cost function is the size of the cutset. The underlying
idea is that limiting the communication (number of moves) between clusters
minimizes the increase in the schedule length due to clustering. Unfortunately,
the load balancing among clusters induced by the algorithm is not a guarantee
of latency minimization. In fact, in our experiments we found that sometimes
the highest quality solution executes only a small subset of the operations in
some of the clusters. Moreover, due to the specifics of the algorithm in Capitanio
et al. [1992], the target architecture must have homogeneous clusters; that is,
all clusters must have exactly the same number and type of FUs. Similarly to
ours, the algorithm was tested on a number of basic block kernels.

Leupers [2000] presents an “instruction partitioning” (binding) algorithm
where an initial (random) binding is improved by simulated annealing. A de-
tailed scheduling is performed for each generated binding and the correspond-
ing latency is used as a cost function driving the optimization. The author
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reports that the algorithm is not sensitive to the quality of the initial binding
and thus a random initial binding is performed. The cost function evaluated at
each simulated annealing iteration is the schedule latency obtained by a de-
tailed scheduling algorithm. (The approach was experimentally validated for
the two-cluster Texas Instruments’ C6201 VLIW processor.) The experiments
show from 7 to 26% improvement in schedule latency, as compared to the TI
assembly optimizer, at the expense of an increase in compilation time typical
of simulated annealing algorithms. Unfortunately, the execution time of the
algorithm is likely to be significantly affected if one considers machines with
a larger number of clusters. Our improvement algorithm is less sensitive to
the number of clusters since only boundary perturbations are performed (see
Section 3.2), starting from a “good” initial point. Similarly to our experiments,
the author uses time-critical basic blocks from typical DSP algorithms, without
considering register allocation.

Hanno and Devadas [1998] address several aspects of code generation
including binding for a clustered datapath architecture. They introduce an
elegant model, the split-node direct acyclic graph, which captures all possible
operation bindings along with the necessary data transfers. However, the bind-
ing algorithm based on that model only handles clusters with a single functional
unit.

Özer et al. [1998] present a greedy binding/scheduling algorithm similar to
our initial binding algorithm. In contrast to our cost function (Section 3.1.2),
theirs requires the computation of ready times for operations being bound (and
thus, their scheduling). Although the algorithm in Oz̈er et al. [1998] also out-
puts a schedule, we believe that a postprocessing scheduling step would still
be beneficial, since the scheduler would then have complete information on
all the modifications in the DFG induced by the binding. The authors use
inner loop basic blocks (selected from benchmark programs) to evaluate the
algorithm.

Several research groups (see, e.g., Nystrom and Eichenberger [1998];
Fernandes et al. [1999], and Sanchez and Gonzàlez [2001]) address binding in
the context of modulo scheduling algorithms. The objective of modulo schedul-
ing is to software pipeline the inner loop body (i.e., derive a retiming function
for its operations), as well as determine adequate binding and scheduling func-
tions, so as to minimize the loop’s initiation interval (i.e., maximize throughput).
The problem addressed in those papers is different from the problem addressed
in this work, in that they are performing performance-enhancing loop trans-
formations. In fact, as mentioned earlier, our initial binding algorithm B-INIT
was used as a “tool” inside the optimization process of CALiBeR, a software
pipelining algorithm proposed by Akturan and Jacome [2001]. A trivial exten-
sion was needed to incorporate recurrence edges in the algorithm (see Akturan
and Jacome [2001]).

Kailas et al. [2001] describe a code generation framework for clustered VLIW
processors. This work is similar to Özer et al. [1998] in that it combines binding
and scheduling. In addition, it includes a new on-the-fly global and local regis-
ter allocation method. Specifically, the algorithm uses a greedy strategy based
on list scheduling to perform simultaneous binding, scheduling, and register
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allocation. Upon selecting an operation from the ready list (priority is given to
operations currently on the critical path), the schedule cycle13 of that operation
is calculated for each of the clusters and the operation is bound to the clus-
ter with the earliest cycle (tie-breaking is based on the presence of extra copy
operation(s) or on register pressure). The scheduling and register allocation
(and if necessary, copy and spill code insertion) is then performed for that
operation.14

Desoli [1998] and Faraboschi et al. [1998] developed an elegant two-phase
binding algorithm called partial component clustering.15 The first phase of PCC
partitions the DFG into several partial components, using a depth-first traver-
sal, similarly to the bottom-up greedy (BUG) [Ellis 1986] algorithm. Several
such partitions are created by varying the threshold parameter, the maximum
number of nodes per partial component. An initial assignment algorithm then
places the partial components into clusters, trying to balance the load and
minimize intercluster communication. The second phase implements an iter-
ative improvement of the initial binding, driven by the Q M cost function (see
Section 3.2) with latency obtained by a fast scheduler which includes an es-
timator for register allocation. We found this algorithm to be one of the best
representatives of the state of the art, and thus selected it to be our reference
algorithm (see Section 4).

Mattson et al. [2000] argue the advantages of distributed register file VLIW
architectures over the clustered architectures targeted in this article. In a
distributed register file architecture, each functional unit is connected to the
single read port of a dedicated register file, and all functional unit outputs
are connected by shared buses to the single shared write port of each reg-
ister file [Mattson et al. 2000]. Note that scheduling in the context of such
architectures is significantly more complex than scheduling for clustered ar-
chitectures, since it requires simultaneous: (1) allocation/binding of opera-
tions to individual functional units; (2) allocation/binding of buses and register
file ports to the communications between such operations (route assignment);
and (3) scheduling of operations and routes (i.e., communications between
operations). An elegant, incremental scheduling algorithm is proposed that
interleaves allocation and scheduling of operations with allocation and schedul-
ing of communications, carefully searching over permutations of alternative
read (or write) communication paths, and inserting copy operations as needed.
As with our (binding only) algorithm, their proposed communications schedul-
ing algorithm does not consider register allocation, that is, essentially assume
that the register files instantiated in the machine have infinite size, and rely
on a postpass register allocation, spill insertion, and scheduling step to ac-
count for their limited size. Note that this assumption may be more prob-
lematic in the context of distributed register file architectures than in the

13This evaluation takes into account data dependency and resource constraints, including possible
copy operations and the availability of dead registers.
14More precisely, this is only performed if the operation’s earliest cycle is on or before the current
cycle. Otherwise, the current operation is dropped and the next one is considered.
15Faraboschi et al. [1998] present a good overview of clustering in general for VLIW datapaths.
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context of clustered architectures, since the numerous individual register files
in the former (one per functional unit input port), are likely to be smaller
than their counterparts in a clustered architecture, and thus more vulnera-
ble to overflow due to “local spikes” in the number of live variables. This is,
however, the price of keeping the algorithm complexity under control. Unfor-
tunately, it is not clear that the proposed algorithm will scale for the large
number of functional units envisioned by the authors for such machines: on
the order of hundreds. [Mattson et al. 2000] Indeed, because of the significant
complexity of distributed register file architectures, in order to ensure high
quality results, the algorithm performs a search over permutations of valid
read (or write) communication paths, which is exponential with the number
of communications, that is, with ILP [Mattson et al. 2000]. Thus the expo-
nential growth in execution time of the algorithm may preclude its utiliza-
tion in the very high ILP context for which such machines are primarily de-
signed.

A final note concerning the empirical contrast between clustered and dis-
tributed register file organizations presented in the article: specifically, for a
set of representative kernels, the authors report that a distributed register file
architecture with 12 functional units delivers significant gains in performance
(up to 120%), as compared to: (1) a clustered architecture with 2 clusters, each
with 6 functional units; and (2) a clustered architecture with 4 clusters, each
with 3 functional units. Inspecting the detailed data provided in the article for
the test kernels, we found it surprising that the two comparison clustered archi-
tectures (with such different cluster granularities), delivered exactly the same
average performance over the set of experiments; that is, both delivered an av-
erage speedup of 0.82 in schedule length, as compared to an “ideal” centralized
machine with the same number of functional units. Moreover, the machine with
the smaller clusters frequently outperformed the machine with the larger clus-
ters in the experiments. These results are in sharp contrast with the empirical
results reported, for example, by Faraboschi et al. [1998] and Lapinski et al.
[2002], where it was found that increasing cluster size (i.e., the number of func-
tional units in a cluster) consistently improved schedule latency. Accordingly, it
would be interesting to see how these comparative performance numbers might
be affected if a high-quality binding algorithm, such as the one proposed by
Desoli [1998], or in this article, were used for the experiments with the clustered
machines.

6. CONCLUSIONS

We proposed an effective binding algorithm for clustered VLIW processors and
experimentally demonstrated performance improvements of up to 33% as com-
pared to one of the best state-of-the art binding algorithms reported in the
literature. Beyond its relevance to code generation, due to its flexibility and ef-
ficiency, our binding algorithm has been successfully incorporated in a register-
sensitive software pipelining algorithm for clustered VLIW machines [Akturan
and Jacome 2001] and in a design space exploration framework for datapath
configurations of application-specific VLIW processors [Lapinskii et al. 2002].
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ÖZER, E., BANERJIA, S., AND CONTE, T. 1998. Unified assign and schedule: A new approach to

scheduling for clustered register file microarchitectures. In Proceedings of the 31th Annual

International Symposium on Microarchitecture.
PAULIN, P. G. AND KNIGHT, J. P. 1987. Force-directed scheduling in automatic data path synthesis.

In Proceedings of the 24th ACM/IEEE Design Automation Conference. IEEE Computer Society
Press, Miami Beach, 195–202.

PEIXOTO, H. P. 1999. Reuse and estimation techniques for embedded systems-on-a-chip. PhD
Thesis, The University of Texas at Austin.

RAU, B. R., KATHAIL, V., AND ADITYA, S. 1998. Machine-description driven compilers for EPIC pro-
cessors. Tech. Rep. HPL-98-40, Hewlett-Packard Co., September.

RIXNER, S., DALLY, W. J., KHAILANY, B., MATTSON, P., KAPASI, U. J., AND OWENS, J. D. 1999. Register
organization for media processing. In Proceedings of the 26th International Symposium on High-

Performance Computer Architecture.
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